

Effects of Good Lubricants on Engine Performance to Eliminate Frictional Force and Prolonging Engine Life Span

Ohwojero Chamberlain Joseph (PhD)

Department of Technical Education, Delta State University, Abraka cohwojero@gmail.com

Wordu, Chiduhiegem Chukwudi-Rewha (PhD)

Department of Technical Education, Ignatius Ajuru University of Education, Port Harcourt, Rivers State revchidiwordu@gmail.com

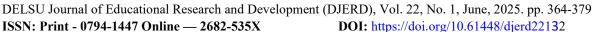
Abstract

The lubrication system involves the use of solid substance and liquid substance, the solid substance involves the use of grease to lubricate surface of metals to eliminate frictional force, the use of liquid substance that flows in an engine to eliminate frictional force. Despite advances in mechanical engineering, engines frequently fall short of their expected performance levels and service life, largely due to poor lubrication. Since the beginning of the industrial revolution, lubrication has played a vital role in ensuring the smooth and efficient operation of machinery. This opinion-based research adopts a comprehensive survey approach to highlight key insights, focusing on the impact of high-quality lubricants in enhancing engine efficiency, reducing friction, and prolonging engine lifespan. Focusing on the concepts of engine, engine performance and frictional force, types of engines, types of lubrication, ingredients for producing lubricants, properties of lubricant, importance of lubricants in engines, effects of frictional force on engines. The study concludes that selecting the appropriate lubricating fluid is crucial for maintaining the performance, efficiency, longevity and life span of automobile engines. Its recommend that regular fluid analysis is essential to monitor the condition of lubricating fluids, selecting the right lubricating fluid for a specific application is crucial. Proper fluid maintenance practices are vital to extend the lifespan of an engine.

Keywords: Engine; Engine Life Span; Lubricants; Engine Performance; Frictional Force.

ISSN: Print - 0794-1447 Online — 2682-535X DOI: https://doi.org/10.61448/djerd22132

Introduction


Engine is a machine designed to convert one or more forms of energy into mechanical energy or force and motions. The engine functions as the central component of an automobile (Anyebe, 2019). It operates as an intricate system designed to transform the heat generated from fuel combustion into mechanical energy that propels the vehicle's wheels (Denton, 2021). This energy conversion process begins with a spark that ignites a blend of fuel vapor and compressed air within a temporarily sealed cylinder. The resulting rapid combustion of this mixture leads to a significant expansion, which generates the force necessary to move the vehicle. This entire mechanism characterizes what is known as an internal combustion engine (Heywood, 2018).

Automobile is a machine that changes chemical energy to mechanical energy. The engine is a central component of all vehicles (Denton, 2021). Before hybrid and electric vehicles came to exist, an engine was a machine that burns fuel like diesel and petrol internally (Signal, 2024). There are many different types of engines available, each with its own set of features and capabilities. Certain engines are made for best performance, while others are made to use less gasoline (Li, 2023). According to Choksey (2024), engines are classified as follows: (1) Inline engine, (2) V-engine, (3) Internal combustion engine, (4) W-engine, (5) Six-cylinder engine, (6) Flat engine, (7) Petrol engine, (8) Straight-three engine, and (9) Rotary engine.

Engine lifespan is commonly referred to as the "time between overhaul" (TBO), indicating the operational duration before major maintenance is required (Chunhua & Lei, 2019). Although manufacturers typically determine a projected lifespan for each engine, this specification is not always disclosed to the general public (Krivoshapov et al., 2023). According to Qiao et al (2018), a given engine, for example, might be expected to run for 50,000 gallons of fuel, 10,000 hours, or 20 years. Engine lifespans have no fixed rule, in the past it was about 8 years or 150,000 miles. Recently, due to new designs, tech, and service standards, it's been around 200,000 miles or a decade (Lianbo, 2013).

The car engine is not just a mechanical component; it's the essence of your vehicle's power and performance. The engine converts fuel into motion, propelling your car forward with remarkable efficiency, it's a symphony of meticulously crafted parts working harmoniously to provide a smooth and reliable driving experience and there are many factors that can influence how long a car engine will last (Ahmad, 2023). One of the critical facts is regular maintenance. By ensuring routine oil changes, filter replacements, and timely servicing is crucial for maintaining a heating engine. Neglecting this maintenance can lead to increase of wear and tears, ultimately shortening your engine's lifespan (Wei et al, 2023). The driving condition plays an important role in the condition of the vehicle, frequent stopping of the vehicle when driving round the traffic can stress the engine more than long highway drives (Shoudao, 2014). The weather conditions, such as hot summers, or harsh winters, can impact the engine's performance and longevity. Different manufacturer uses unique engine designs and components, influencing its durability. Knowing these differences empower person to make decisions of long-lasting engine (Wenhua et al, 2018).

Lubrication of an engine system is a vital aspect of an engine, soften and regulate engine parts keeping an engine clean, prolonging the engine life span, by eliminating the frictional force of an engine. Friction is an obstacle in an engine it shortens the life span of an engine, because of lack of lubrication, its increases the temperature of an engine there by shortens the life span. The increase of temperature in an engine leads to heat in an engine that

causes frictional force in engine parts, which lead to reduction in engine parts because of tear and wear in an engine system.

Frictional force in an engine system can occur in an engine due to shortage of engine oil in engine parts. The lubrication system is an important part of an engine, because lubrication takes place in the engine making engine parts to move smoothly without any difficulty. If there is no lubrication on engine parts there is bound to be frictional force, which is the problem to an engine.

Engine Block

Fig 1: An engine block

The materials that an engine is made of determine the lifespan. According to Tsukasa, (2020), car engine is made of different materials, mostly iron and aluminium. In fact, some engines are made of the combination of two or more metals. Tsukasa further opined that many trucks have engine with iron block and aluminium heads, iron -block engine tend to be more durable and last longer than other types of engines because year after year, iron is strong enough to withstand the incredible heat an engine is capable of producing. Iron block engines tend to be more durable and last longer than other types of engines.

To consider the lifespan of an engine one must consider the living on a hill, the engine will tear and wears down, because you have to pass over rough terrain on a regular basis where your engine has to undergo more stress that will make it not to last. Deinfa, (2023) explain that the cooling system plays a vital role in keeping an engine at its ideal operating temperature. Engine generates heat during combustion, and the cooling system to prevent overheating proper maintenance ensures it operates at the right temperature, maximizing efficiency and lifespan.

Lubricants are liquid and semi- solid substances that are used to eliminate frictional force between metal material surfaces, lubricant also performed other functions such as heat elimination, power transmission, stoppage of dust particles, and prevention of corrosion reducing oxidation (Owunna. & Ikpe, 2023). According to Narayana and Viru, (2022) who stated that lubricants are liquids semi-solid form, but exist in different ways, which includes solid, which exist in form of graphite, molybdenum disulphide, polyhedral fluroetheylene, Semi-solid which include grease, liquid water, which include natural or synthetic oils and gaseous which include air.

ISSN: Print - 0794-1447 Online — 2682-535X **DOI:** https://doi.org/10.61448/djerd22132

Fig 2: shows the lubrication of an engine.

The lubricants are generally used by many automotive, aerospace, construction firms, chemical, industry or textile industries to ensure the smooth of machinery and equipment (Jeyaprakash & Yang, 2021). The movement of two surfaces on each other can lead to resistance due to frictional force that exists between the two surfaces which can lead to tear and wear of the two surfaces (Hutchings et al, 2016). In automotive applications of lubricants facilitates the interrupted movement between machine parts. When lubricants are applied to metal surfaces, they form a thin protective layer that fills microscopic irregularities, thereby facilitating smoother movement between sliding components.

According to VibrAlign (2020), lubricants can be broadly categorized into four types: oils, greases, penetrating lubricants, and dry lubricants. Among these, oil and grease are considered the most frequently used forms, particularly in industrial and automotive applications (Basiron et al., 2023). Lubricating oil, in particular, is a prevalent choice in many mechanical settings due to its fluid nature, which varies in viscosity or "weight." Lower viscosity oils are thinner and flow more easily. Often, additives are incorporated into oils to prevent oxidation and corrosion, enhancing their protective capabilities (Nehal et al., 2013).

Kodali (2014) outlines the primary categories of substances used in lubricant formulation. Mineral lubricants, derived from petroleum or crude oil, are widely employed in automotive engines, industrial equipment, and general machinery due to their accessibility and effectiveness. Synthetic lubricants, created through chemical synthesis, offer enhanced resistance to extreme temperatures, oxidation, and mechanical wear, making them ideal for high-performance engines and aerospace technologies. Semi-synthetic lubricants, as the name implies, blend mineral and synthetic oils, offering a compromise between cost and performance. These are frequently used in automotive and some industrial settings. Lastly, bio-based lubricants, sourced from renewable materials like vegetable oils, provide an environmentally friendly alternative to petroleum-based products and are commonly applied in contexts with stringent environmental standards.

For an engine to function efficiently, lubrication is essential in minimizing friction among moving parts, thus conserving energy and reducing mechanical stress (Puhan, 2021). Proper lubrication ensures smoother operation, promotes more effective fuel combustion, and enhances overall engine performance. It also shields engine components from damage by decreasing direct surface contact, which would otherwise accelerate wear and tear (Jana et al., 2016). Additionally, quality engine oil helps prevent harmful chemical reactions such as corrosion on engine surfaces (Fuch, 2024).

Modern engines vary significantly in their design and operational requirements. Consequently, there is no universally suitable engine oil for all engines. Many modern

engines are optimized for low-viscosity oils, which support better fuel economy while still offering adequate protection to high-stress components. These lighter oils enable internal engine parts to move more freely, thus minimizing resistance (Abdullaha et al., 2013).

Lubrication plays a crucial role in extending the operational life of automotive engines by reducing friction—the primary factor responsible for component degradation and performance decline (Afonso et al., 2023). By minimizing friction and the resulting heat, lubricants not only enhance efficiency but also help reduce long-term maintenance costs. Shonaike (2019) emphasizes that effective lubrication directly influences engine longevity.

In the absence of a reliable lubrication system, engines are vulnerable to rapid overheating and mechanical failure (Cavalcanti et al., 2022). The lubrication process begins with an oil pump, typically located at the base of the engine. This pump draws oil through a strainer, which removes larger contaminants, before circulating the clean oil to critical engine parts.

Veluri (2021) describes two main types of lubrication systems: the wet sump and the dry sump. In a wet sump system, oil is stored in a sump and circulated to various parts of the engine under pressure (approximately 4 to 5 kg/cm²). After lubricating the engine, the oil returns to the sump for reuse. This system is common in most consumer vehicles. On the other hand, dry sump systems, often used in high-performance or racing cars, incorporate additional components such as an external oil reservoir and breather tank (Reeves et al., 2015). These systems also feature a cyclone separator and a multi-stage pump that maintain oil flow and improve lubrication under extreme operating conditions.

Liquid lubricants are particularly advantageous in these systems due to their ability to adapt to the contours of metal surfaces, filling in microscopic gaps and effectively reducing friction (Deepika, 2020). Frictional force, which arises from contact between moving surfaces, is a major factor in engine energy loss. In the context of an automobile, it typically occurs when the crankshaft converts combustion energy into torque—a rotational force that ultimately powers the vehicle's wheels. Torque, being a measure of an engine's mechanical output, is directly affected by the efficiency of the lubrication system.

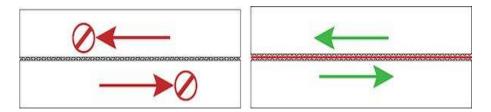


Fig. 3: show a friction mechanism

The image on the left shows two rough surfaces with a high amount of friction, creating resistance. The image on the right shows how the addition of lubricant creates a thin film that makes sliding of materials easier. The amount of friction can be calculated with the following coefficient of friction formula where:

 μ = Static (μ s) or kinetic (μ k) frictional coefficient

Fn = Applied normal force

Fr = Friction force

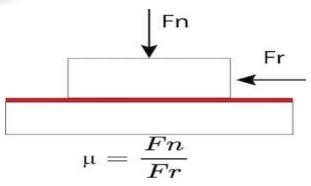


Fig. 4: show the tribology

Fn is the force applied to the sliding surfaces. Fr is the friction force (movement), and the red line indicating the additional of lubricant which lowers the kinetic frictional coefficients (McGrillrmy, (2021). According to Gong (2020) and John et al (2021), the lubricant performs the following function on the materials the oils, lubricating (A) Separating (B) Sealing (C) Heat transfer (D) and Protecting (E)

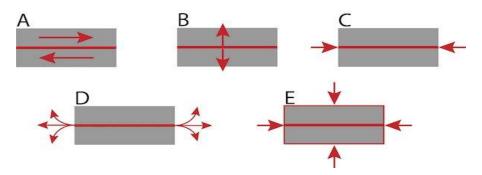


Fig. 5: show the properties lubricant

This shows their properties since lubricant have different properties that impact their physical and chemical properties. Among the properties according to Rahman et al. (2021) are as follows:

Viscosity: It shows the internal resistance to flow, high viscosity lubricants are thick and 1. flow, while lower viscosity lubricants have a close consistency to water to flow. The images below demonstrate the viscosity of four different oils, the ball sink faster in the thinner, low viscosity oil while it sinks slower in the higher viscosity blend.

Fig. 6: show the viscosity of a lubricant

ISSN: Print - 0794-1447 Online — 2682-535X DOI: https://doi.org/10.61448/djerd22132

- 2. **Viscosity Index:** The rate of change with change in temperature. In other words, how much viscosity changes as temperature changed.
- 3. **Oxidation Stability:** Oxidation is a reaction that occurs when oxygen is combined with lubricating oil. Variable such as high temperatures, water and acids, will accelerate the rate of oxidation.
- 4. **Pour Point:** The lower temperature at which a lubricant will flow or pour like a liquid. This can differ depending on test conditions.
- 5. **Demulsibility:** The ability of a lubricant to separate from water.
- 6. **Flash Point:** The temperature at which a lubricant will ignite when heat, mixed with air, but a flame is not sustained while these are other properties to consider when choosing a lubricant, these are often considered the most important.

Lubricants play a crucial role across a wide range of industries, forming an integral part of machinery maintenance and performance. They facilitate seamless mechanical operation by minimizing friction between moving components. Beyond reducing friction, lubricating oils serve additional protective functions—helping to prevent rust, corrosion, excessive heat buildup, and mechanical wear and tear (Tamasi, 2023). Echoing these views, Shah et al. (2021) emphasize that lubricating oils are not only fundamental in industrial operations but also essential in daily mechanical processes. Their effectiveness lies in their ability to prolong machinery lifespan, enhance operational efficiency, and significantly improve engine performance by minimizing physical degradation and heat accumulation.

Several factors influence the overall performance of an engine. These include but are not limited to operating temperature, fuel-air mixture ratio, type of fuel used, materials utilized in engine construction, and the engine's mechanical load (Esfe & Kamyab, 2022). For researchers analysing how engine size impacts performance, it is critical to account for these interdependent variables, as they can significantly affect output measures.

Smart (2023) notes that ever since the emergence of internal combustion engines over a century ago, various innovations and products—ranging from performance-enhancing additives and synthetic lubricants to advanced carburettors and spark plugs—have been introduced, each with the promise of superior performance. Despite these innovations, many have failed to consistently meet expectations. Central to enhancing engine performance is the concept of balanced cylinder pressure. This balance ensures that combustion occurs more efficiently and that pressure levels are maintained close to their optimal rated values, thereby enabling smoother and more effective power generation.

Blau (2013) describes the internal combustion engine (ICE) as a mechanism that generates energy through the combustion of liquid or gaseous fuel within a sealed chamber known as the combustion chamber. This combustion produces high-pressure gases, which are converted into mechanical forces to propel vehicles, generate electricity, or serve various industrial functions. A key metric for evaluating ICE efficiency is the ratio of peak combustion pressure (pmax) to compression pressure (pcom), along with the resulting mean effective pressure (pmep). Achieving peak engine efficiency requires optimizing this ratio while remaining within the technical and environmental constraints of modern emission standards.

Magnus (2013) stresses that while boosting engine efficiency is a desirable goal, it often conflicts with emission reduction efforts. Enhancing combustion for maximum output can inadvertently increase harmful emissions, which must be managed in accordance with

stringent environmental regulations. Therefore, optimizing engine performance is often a balancing act between efficiency and emissions compliance.

In applied practice, cylinder pressure data across a complete 360-degree crankshaft rotation can provide insights into engine health and performance. This data, often obtained from engine load tests aboard vessels or in testing facilities, offers empirical evidence of how combustion pressure dynamics influence engine output. One such data source, as illustrated by DNVEL, highlights the practical applications of these theoretical concepts in real-world engine monitoring and optimization.

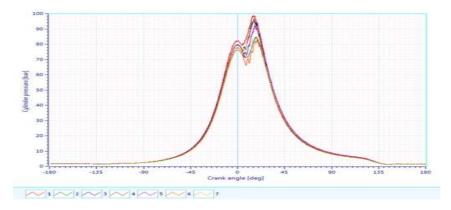


Fig 7: show the performance of an engine

Abdullah (2022) identifies several key indicators commonly used to assess engine performance, each providing insight into the efficiency and effectiveness of engine operation. One such indicator is power, measured in kilowatts (kW), which reflects the rate at which torque is produced over time—essentially indicating the engine's capacity to perform work efficiently.

Another crucial metric is torque, expressed in Newton-meters per hour (Nmh), representing the engine's rotational force. Torque plays a vital role in determining a vehicle's driveability, as it influences acceleration and pulling power, especially under load.

Mean Effective Pressure (MEP) serves as a comparative measure, enabling evaluations of torque output in relation to engine displacement. This allows for meaningful performance comparisons across different engine sizes and configurations.

Specific Fuel Consumption (SFC), typically measured in grams per kilowatt-hour (g/kWh), indicates the amount of fuel required to generate a unit of power at specific engine speeds and loads. Lower fuel consumption is desirable, particularly in competitive or efficiency-sensitive contexts, as it reduces the quantity of fuel that must be stored or carried at any given time.

Engine performance generally means how well an engine is producing power (output) with respect to energy input or how effectively it provide useful with respect to some other comparable engine. Engine performance is often characterized by the engine operating behaviour in the speed load domain, for example, the behaviour of emission, fuel consumption, noise, mechanical and thermal loading (Xin, 2013). To choose the right lubricant that will lubricate an engine it is synthetic lubricants, such as those made by kry tox oils and greases, reduce friction, which means they help engines last longer when compared

to conventional oils, they perform better creating better lubricant, but also working even in high temperatures, which explains why you see them used so often on performance vehicles

Importance of Lubricant in Engines

Maintaining the correct level of engine oil is crucial for the optimal functioning and longevity of an engine. Regularly checking the oil level helps prevent costly engine repairs and ensures the engine operates smoothly. The significance of engine oil can be highlighted through several key benefits:

- 1. Engine oil extends the lifespan of an engine by minimizing friction between moving parts and keeping the engine clean. It prevents the buildup of sludge and deposits that could clog or damage the engine components.
- 2. Proper engine oil usage helps reduce both fuel consumption and carbon monoxide emissions. When oil levels are too low or oil is overused, increased friction reduces the engine's energy efficiency, leading to higher fuel use. High-quality oils also contribute to lowering harmful emissions released into the environment.
- 3. Engine oil promotes the smooth running of the engine. Adequate lubrication is essential to avoid serious mechanical damage, enhancing overall engine performance and reducing maintenance costs.
- 4. Engine oil improves the sealing within the engine, particularly between the pistons and cylinders. It forms a protective layer in the clearances between engine parts, ensuring better compression and preventing leakage.
- 5. Engine oil protects metal components from corrosion caused by acidic byproducts generated during fuel combustion. Modern engine oils contain additives that inhibit corrosion; however, oil can oxidize over time and lose its protective qualities, which makes regular oil changes necessary.

Another vital role of engine oil is its cleaning ability. Microscopic deposits such as dust and residue form inside the engine, and without engine oil, these impurities would accumulate and reduce performance. The oil continuously suspends these contaminants and transports them to the oil filter, where they are removed.

Ultimately, the primary function of engine oil is to lubricate and protect metal surfaces inside the engine. By forming a thin film between metal parts, it prevents direct metal-to-metal contact, thereby reducing wear and tear and extending the engine's service life.

Lubrication Procedure

The lubrication system is procedural during its application. It requires the right product. The determination of the correct lubricant is the initial move towards accomplishing the equipment and reliability. Once we select the right type of lubricant, we will need to apply it to the proper location. The right amount or quantity of oil or lubricant must be used. Morgan and Mortimer, (2024) explain steps of changing oil in an engine step by step.

Step I: Prepare or determination of your vehicle engine replacement. Some model vehicles have different engine sizes depending on what level it is. If you do not know which of the vapour your vehicle has,

ISSN: Print - 0794-1447 Online — 2682-535X

DOI: https://doi.org/10.61448/djerd22132

- 1. Check your manual.
- 2. check under the vehicle engines on control information sticker this typically displays the engine displacement in litres example of 1.8 lifters.
- 3. Use a VIN decoder and the engine displacement.

Step II: The correct type of oil. You should not just turn any odd motor oil in a vehicle's engine. This can be pernickety machines, especially about their lubricants. You want the correct viscosity to make the engine run as designed. How do you get the viscosity?

- 1. By checking the manual.
- 2. Sometimes the oil cap has the label recommending an oil types.
- 3. A quick internal search can help to find a grade sources.

Once you find the correct viscosity like 0w-20, 5w-30w, 40w-50w e.t.c. decide which oil you will want like.

- 1. Conventional, cheaper, but not as refined.
- 2. Blend mixing of conventional and synthetic oil midrange price point with improved oil refinement.
- 3. Synthetic most expensive, but most refined for consistent viscosity.

It is important to note that some vehicle need full synthetic oil.

Step III: The amount of oil needed by an engine depends on the frictional force and excess heat that is build up to a premature. Too much oil in the system can limit the functionality of certain components.

- 1. By checking the manual.
- 2. Calling the dealer.
- 3. Check for a reputable sources.

How oil flow through the crankshaft of an engine is demonstrated below.

Fig 8: shows how the crankshaft of an engine is being lubricated.

The picture shown above demonstrate the oil circulate round the entire engine crankshaft system. The oil pump picks up oil from the oil pan both in the lower parts of the engine where the oil is stored. The oil pump directs the lubricating oil upward to the main bearing of the crankshaft located in the lower middle section of the engine. The crankshaft converts linear motion into rotational energy. From the main bearing, oil flows through drilled holes in the crankshaft to the rod bearings, and then through an oil line to the cylinder head in the upper middle section. Through a network of oil galleries, the lubricant reaches the

camshaft bearings and valves. The pistons, rings, and pins receive oil via the connecting rod bearings.

Several factors influence the lifespan of an engine, as outlined by Deinfa (2023):

- 1. **Regular maintenance and timely oil changes:** Adhering to the manufacturer's maintenance schedule, including punctual oil changes, is critical. Neglecting maintenance can lead to premature wear, diminished engine performance, and increased risk of mechanical failure.
- 2. **Temperature control:** The cooling system maintains the engine at its optimal operating temperature by dissipating heat generated during combustion. Proper upkeep of the cooling system ensures the engine operates efficiently and prolongs its service life.
- 3. **Fuel quality and combustion efficiency:** Using poor-quality or contaminated fuel results in incomplete combustion, causing harmful deposits that degrade engine performance. Utilizing high-quality fuel from reliable sources supports peak engine function and longevity.
- 4. **Air filtration and intake cleanliness:** A well-maintained air intake system is essential to prevent dirt and debris from entering the combustion chambers. Regular inspection and replacement of the air filter protect the engine from harmful particles.
- 5. **Careful driving habits:** Avoiding aggressive driving behaviors such as rapid acceleration and hard braking reduces stress and wear on engine components. Minimizing prolonged idling also helps prevent unnecessary engine wear.

Proper lubrication plays a critical role in maintaining equipment at acceptable temperatures and friction levels, significantly lowering the likelihood of unexpected maintenance and ensuring smoother operation by absorbing shocks and vibrations (Abdelbary & Chang, 2023). While lubricants serve multiple functions, their primary role is to reduce unwanted friction—the resistance that occurs when solid surfaces slide against each other (Malik et al., 2023).

According to Abdullaha et al. (2013) and Zhao et al. (2022), the beneficial effects of quality lubricants on engine performance, friction reduction, and engine longevity include:

- 1. **Heat control:** Lubricants absorb and transfer heat generated by friction, effectively reducing overall heat buildup in engine components.
- 2. **Contamination control:** Lubricants create seals between internal machine parts and the external environment to prevent contaminants from entering. Circulating oils carry particles to sumps, tanks, or filters, where they are trapped and removed.
- 3. **Protection against chemical corrosion:** Additives in lubricants coat machine surfaces, shielding them from corrosive chemical reactions.
- 4. **Energy transfer:** Hydraulic oil, valued for its incompressibility, is the preferred lubricant for efficient energy transfer within hydraulic systems.

Conclusion

Selecting the appropriate lubricating fluid is crucial for maintaining the performance, efficiency, longevity and life span of automobile engines. Factors such as viscosity, temperature range, load-bearing capacity, compatibility, and environmental considerations should be carefully evaluated when making a lubricant selection. Lubricating fluids play a vital role in various industrial applications by reducing friction, dissipating heat, preventing

ISSN: Print - 0794-1447 Online — 2682-535X

DOI: https://doi.org/10.61448/djerd22132

corrosion, controlling contamination, reducing noise, and improving energy efficiency. The use of high-quality lubricants not only enhances operational efficiency but also extends the lifespan of machinery, reducing maintenance costs and downtime. Therefore, it is crucial for industries to prioritize the selection and application of appropriate lubricating fluids to ensure optimal performance and longevity of their equipment. The effectiveness of lubricants can be compromised due to factors such as contamination, degradation, and inadequate maintenance practices.

Recommendations

Therefore, the following recommendations are suggested to enhance lubricating fluids' performance, ensuring optimal functionality and longevity of automobile engine.

- 1. Regular fluid analysis is essential to monitor the condition of lubricating fluids. By conducting routine tests, such as viscosity measurement, acid number determination, and particle count analysis, potential issues can be identified early on. This allows for timely corrective actions, such as fluid replacement or the addition of appropriate additives, to maintain optimal performance.
- 2. Selecting the right lubricating fluid for a specific application is crucial. Factors such as operating temperature, load, speed, and environmental conditions should be considered. Consultation with lubricant suppliers or industry experts can help in identifying the most suitable lubricant, ensuring compatibility and optimal performance.
- 3. Contamination is a major contributor to lubricating fluid degradation. Implementing effective contamination control measures is essential to maintain fluid performance. This includes proper filtration systems, regular cleaning of equipment, and ensuring a clean working environment. Additionally, sealing systems should be inspected and maintained to prevent external contaminants from entering the system.
- 4. Proper fluid maintenance practices are vital to extend the lifespan of lubricating fluids. This includes regular oil changes, filter replacements, and adherence to recommended maintenance intervals. Overlooking maintenance schedules can lead to accelerated fluid degradation, reduced performance, and increased equipment wear.
- 5. Maintaining optimal operating temperatures is crucial for lubricating fluid performance. Excessive heat can lead to fluid breakdown, increased viscosity, and reduced lubricity. Adequate cooling systems, temperature monitoring, and insulation measures should be implemented to ensure the fluid operates within the recommended temperature range.
- 6. Additives can significantly enhance the performance of lubricating fluids. Depending on the application, additives such as anti-wear agents, antioxidants, and detergents can be used to improve lubricant, reduce oxidation, and prevent deposit formation. However, it is important to follow the manufacturer's recommendations and avoid over-additization, which can lead to adverse effects.
- 7. Proper training and education of personnel involved in lubricant handling and maintenance are essential. This includes understanding the importance of lubricating fluids, proper handling techniques, and the significance of adhering to recommended practices. Regular training sessions and workshops can help improve awareness and ensure consistent adherence to best practices.

References

- Abdelbary, A., & Chang, L. (2023). Lubricants and their properties, Chapter 8. Principles of Engineering Tribology Fundamentals and Applications, 345-389.
- Abdullah, F. (2022). Short Moteno Automotive Engine Performance. Advance in Automobile Engineering and Technology Press
- Abdullaha, M. A., Salemana, S. A., Tamaldina, N. & Suhaimia, M. S. (2013) Reducing wear and friction by means of lubricants mixtures. *Procedia Engineering* 68, 338-344.
- Afonso, I. S., Nobrega, G., Lima, R., Gomes, J. R., & Ribeiro, J. E. (2023) Conventional and recent advances of vegetable oils as metalworking fluids (MWFS): A Review. Lubricants, 11(4), 160.
- Ahmad, H. (2023). Exploring the life span of a car engine. How many kilometres can you medium.com/cashcars.com/exploring-the-lifespan-of-a-car-engine-howmany-kilometer-car-you-expect-766194aa99.
- Amaechi, O. J., & Boro, O. I. (2016). Effect of heat expansion in an internal combustion automotive engine. The International Journal of Engineering and Sciences, 5(1), 30-35.
- Anyebe, E. A (2019). Combustion Engine and Operations, Automobile Technology Handbook. (Vol. 2.). Kataria Books.
- Basiron, J., Abdollah, M. F., Abdullah, M. I., & Amiruddin, H. (2023) Lubricant mechanisms of ecofriendly lubricant blended with mineral oil for steel-steel contact. Tribology International, 186, 108653.
- Blau, P. J. (2013). Friction in internal combustion engine. In: Wang, Q. J. Chung, YW.Encyclopedia of Nibology. Springer
- Cavalcanti, R. N., Koshima, C. C., Forster-Carneiro, T., Gomes, M. T. M. S., Rostagno, M. A., Prado, J. M. & Meireles, M. A. A. (2022) In natural product extraction: principles and applications. In J. Prado & M. Rostagno (ed.). The Royal Society of Chemistry, 2nd Edition, 1, 1-65.
- Choksey, J. S. (2024). What is an internal combustion Engine? https://www.jdpower. com/cars/shopping-guides/what-is-an-internal-combustion-engine.
- Chunhua, S., & Lei, L. (2019). The prediction of vehicle's service life with BP network. J. Acad. Military Trans., 4, 49-51.
- Deepika, K. (2020) Nanotechnology implications for high performance lubricants. SN Applied Sciences, 2, 1128 (2020).
- Deinfa, D. A. (2023). Understanding the lifespan of a car Engine: Factors that affect durability. https://deinfa.com.lifespan-of-a-car-engine.
- Denton, T. (2021). Automobile mechanical and electrical systems. automobile mechanical and electrical systems: automotive technology: Vehicle maintenance and repair. Taylor & Francis.

- Esfe, M. H., & Kamuyos, M. H. (2022). Application of nanofluids in combustion engine with focusing on improving heat transfer process Engine performance. Encyclopaedia of Physical Science and Technology (Third Edition).
- Fuchs Lubricants, (2024). Why is it important to use the right oil for your engine? Lubricants technology.peoplefuchs.com/us/en/why-is-it-importants-to-use-the-right-oil-for-yourengine
- Gong, H., Yu, C., Zhang, L., Xie, G., Guo, D., & Luo, J. (2020) Intelligent lubricating materials: A review. Composites Part B: Engineering 202, 108450.
- Heywood, J. (2018). *Internal combustion engine fundamentals 2E*. McGraw-Hill Education.
- Hutchings, I., Gee, M., & Santner, E. (2016) Friction and Wear. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Materials Measurement Methods. Springer.
- Jana, S., Mishra, R. S., & Grant, G. J. (2016) Chapter 2-friction stir processing: An introduction. Friction Stir Welding and Processing, 16, 5-27.
- Jeyaprakash, N., & Yang, C-H. (2021). Friction, lubrication, and wear. tribology in materials and manufacturing - wear, friction and lubrication. Intech Open.
- John, M., & Menezes, P. (2021). Self-lubricating materials for extreme condition applications. Materials (Basel). 14(19), 55-68.
- Kodali, D. R. (2014) Development, properties and applications of high-performance biolubricants, Chapter 17. Advances in Biorefineries Biomass and Waste Supply Chain Exploitation, 556-595.
- Krivoshapov, S., Marmut, I., Nahliuk, I., Nazarov, A., Gorbik, Y., Nahliuk, M., Zybtsev, Y., Bezridnyi, V., & Mysiura, M. (2023). Change in engine life and maintenance intervals depending on the fuel consumption of the vehicle during operation. AIP Conference Proceedings. DOI: 10.1063/5.0165624
- Li, C. (2023). Crucial analysis of traditional engines versus hybrid engines. Applied and **Computational Engineering Press**
- Lianbo, Z., (2013). Engine block fatigue life prediction method research. [Published Master's Thesis], North Central University, Shanxi, China.
- Magnus, K. (2013). Diesel engine optimization and fuel savings. how to achieve reduction of fuel oil consumption and maintenance cost through carried out optimization of diesel engine. glomeep.imo.org/technology/engine-performance-optimization-manual.
- Malik, M. A. I., Kalam, M. A., Mujtaba, M. A., & Almomani, F. (2023) A review of recent advances in the synthesis of environmentally friendly, sustainable, and nontoxic biolubricants: Recommendations for the future implementations. Environmental Technology & Innovation, 32, 103366.
- McFarkand, J. (2012). Engine friction and you-frictionology. carmaich.motor trend.com/how-tolctrp-1205-enginology-engine-friction.

- Narayama, R. S., & Viru, R. (2022). Current status and future prospects of biolubricants. *Properties and Application Lubricant. 10*(4), 70-77.
- Nehal, S. A., & Amal M. N. (2013) Lubrication and lubricants. tribology fundamentals and advancements. InTechOpen.
- Nunney, M. J. (2017). Light and heavy vehicle technology (4th ed.). Elsevier Butterworth-Heinemann.
- Owunna, I., & Ikpe, A. (2023). A technical report on the effects of lubricating fluids (lubricants) on service performance of machine parts. In H. Büyükaslan, H. Çiftçi & V. Delen (Eds) International Summit Scientific Research Congress. Liberty Academic Publishers.
- Pawar, R. V., Hulwan, D. B., & Mandale, M. B. (2022) Recent advancements in synthesis, rheological characterization, and tribological performance of vegetable oil-based lubricants enhanced with nanoparticles for sustainable lubrication. Journal of Cleaner Production, 378, 134454.
- Puhan, D. (2021) Lubricant and lubricant additives. tribology in materials and manufacturing - wear. Friction and Lubrication. IntechOpen,
- Qiao, X. Y., Huang, Y. B. Zhang, X. M., & Liu, Y. B. (2018). Method of predicting lifetime of cylinder based on measuring the air pressure in engine cylinder J. Acad. Armored Force Eng., 22, 42-45.
- Rahman, M. H., Warneke, H., Webbert, H., Rodriguez, J., Austin, E., Tokunaga, K., Rajak, D. K., & Menezes, P. L. (2021) Water-based lubricants: development, properties, and Performances, 9(8), 73-78.
- Reeves, C. J., Menezes, P. L., Jen, T., & Lovell, M. R. (2015) The influence of fatty acids on tribological and thermal properties of natural oils as sustainable biolubricants. *Tribology International*, 90, 123-134.
- Saif, M. (2024). Different types of engines and their uses. Level-up engine.com/types-ofengine.
- Shah, R., Woydt, M., & Zhang, S. (2021). The economic and environmental significance of sustainable lubricants. Lubricants, 9, 21-25.
- Shonaike, K. (2019). Engine lubrication system. automedics-Punching.com.
- Shoudao, L. (2014). Research on intelligent fault diagnosis technology and life prediction method for large scale vehicle diesel engine. Petroleum University, Beijing, China.
- Singal, R. K. (2020). *Internal combustion engines*. Kataria Books.
- Smart, J. (2023). 10 easy ways to increase engine performance. *Mobil.www.mobil.com*.
- Proportion Tamasi. S. P. (2023).of lubricants/oil. conroelectronics conro.com/what.are.the.properties-of-lubricants.oils.

DELSU Journal of Educational Research and Development (DJERD), Vol. 22, No. 1, June, 2025. pp. 364-379 **ISSN: Print - 0794-1447 Online — 2682-535X DOI:** https://doi.org/10.61448/djerd22132

- Tsukasa, A. (2020). How long should an engine last? Car from Japan. *Carfromjapan.com/articale/car-maintenance/how-lon-should-an-engine-last*.
- Veluri R. (2021). Type of lubrication system. *Tribonet.tribonet.orglwikiltypes-of-lubrication-systems*.
- Wei, D., Xie, X., Wang, F., Cai, Z., & Zhang, D. (2016). Research on service life prediction of diesel engine. *Journal of Software Engineering*, 10, 392-399.
- Wenhua, X., Xiangkai, L., & Zhang, J. (2018). Evaluating lifetime of automotive engine based on statistical distribution model. *J Acad. Military Trans.*, 4, 64-67.
- Xin, Q. (2013). Fundamentals of dynamic and static diesel engine system designs. *Science direct.com/topics/engine performance*.
- Zhao, X., Li, D., Zhu, H., Ma, J., & An, Y, (2022) Advanced developments in environmentally friendly lubricants for water-based drilling fluid: a review. *RSC Advances*, 12(35), 22853-22868.